direct product, metabelian, supersoluble, monomial
Aliases: C2×C32⋊C6, C32⋊2D6, He3⋊2C22, C3⋊S3⋊C6, (C3×C6)⋊C6, (C3×C6)⋊1S3, C32⋊(C2×C6), C3.2(S3×C6), C6.5(C3×S3), (C2×He3)⋊1C2, (C2×C3⋊S3)⋊C3, SmallGroup(108,25)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — He3 — C32⋊C6 — C2×C32⋊C6 |
C32 — C2×C32⋊C6 |
Generators and relations for C2×C32⋊C6
G = < a,b,c,d | a2=b3=c3=d6=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=c-1 >
Character table of C2×C32⋊C6
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | |
size | 1 | 1 | 9 | 9 | 2 | 3 | 3 | 6 | 6 | 6 | 2 | 3 | 3 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | -1 | ζ6 | ζ3 | ζ65 | ζ32 | linear of order 6 |
ρ6 | 1 | -1 | 1 | -1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | -1 | ζ3 | ζ6 | ζ32 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ8 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ9 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ10 | 1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | -1 | ζ65 | ζ32 | ζ6 | ζ3 | linear of order 6 |
ρ11 | 1 | -1 | 1 | -1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | -1 | ζ32 | ζ65 | ζ3 | ζ6 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ15 | 2 | -2 | 0 | 0 | 2 | -1+√-3 | -1-√-3 | ζ6 | -1 | ζ65 | -2 | 1-√-3 | 1+√-3 | ζ32 | ζ3 | 1 | 0 | 0 | 0 | 0 | complex lifted from S3×C6 |
ρ16 | 2 | 2 | 0 | 0 | 2 | -1-√-3 | -1+√-3 | ζ65 | -1 | ζ6 | 2 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ17 | 2 | -2 | 0 | 0 | 2 | -1-√-3 | -1+√-3 | ζ65 | -1 | ζ6 | -2 | 1+√-3 | 1-√-3 | ζ3 | ζ32 | 1 | 0 | 0 | 0 | 0 | complex lifted from S3×C6 |
ρ18 | 2 | 2 | 0 | 0 | 2 | -1+√-3 | -1-√-3 | ζ6 | -1 | ζ65 | 2 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ19 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ20 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
(1 2)(3 5)(4 6)(7 17)(8 18)(9 13)(10 14)(11 15)(12 16)
(1 16 9)(2 12 13)(3 10 15)(4 18 7)(5 14 11)(6 8 17)
(1 4 5)(2 6 3)(7 11 9)(8 10 12)(13 17 15)(14 16 18)
(1 2)(3 4)(5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
G:=sub<Sym(18)| (1,2)(3,5)(4,6)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16), (1,16,9)(2,12,13)(3,10,15)(4,18,7)(5,14,11)(6,8,17), (1,4,5)(2,6,3)(7,11,9)(8,10,12)(13,17,15)(14,16,18), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;
G:=Group( (1,2)(3,5)(4,6)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16), (1,16,9)(2,12,13)(3,10,15)(4,18,7)(5,14,11)(6,8,17), (1,4,5)(2,6,3)(7,11,9)(8,10,12)(13,17,15)(14,16,18), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );
G=PermutationGroup([[(1,2),(3,5),(4,6),(7,17),(8,18),(9,13),(10,14),(11,15),(12,16)], [(1,16,9),(2,12,13),(3,10,15),(4,18,7),(5,14,11),(6,8,17)], [(1,4,5),(2,6,3),(7,11,9),(8,10,12),(13,17,15),(14,16,18)], [(1,2),(3,4),(5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])
G:=TransitiveGroup(18,41);
(1 6)(2 4)(3 5)(7 14)(8 15)(9 16)(10 17)(11 18)(12 13)
(1 8 11)(2 9 12)(4 16 13)(6 15 18)
(1 8 11)(2 12 9)(3 10 7)(4 13 16)(5 17 14)(6 15 18)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
G:=sub<Sym(18)| (1,6)(2,4)(3,5)(7,14)(8,15)(9,16)(10,17)(11,18)(12,13), (1,8,11)(2,9,12)(4,16,13)(6,15,18), (1,8,11)(2,12,9)(3,10,7)(4,13,16)(5,17,14)(6,15,18), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;
G:=Group( (1,6)(2,4)(3,5)(7,14)(8,15)(9,16)(10,17)(11,18)(12,13), (1,8,11)(2,9,12)(4,16,13)(6,15,18), (1,8,11)(2,12,9)(3,10,7)(4,13,16)(5,17,14)(6,15,18), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );
G=PermutationGroup([[(1,6),(2,4),(3,5),(7,14),(8,15),(9,16),(10,17),(11,18),(12,13)], [(1,8,11),(2,9,12),(4,16,13),(6,15,18)], [(1,8,11),(2,12,9),(3,10,7),(4,13,16),(5,17,14),(6,15,18)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])
G:=TransitiveGroup(18,42);
C2×C32⋊C6 is a maximal subgroup of
C6.S32 He3⋊2D4 He3⋊3D4 He3⋊4D4 He3⋊6D4 C32⋊2GL2(𝔽3) Q8⋊He3⋊C2
C2×C32⋊C6 is a maximal quotient of He3⋊3Q8 He3⋊4D4 He3⋊6D4
Matrix representation of C2×C32⋊C6 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0],[1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,1,0,0,0,1,0,0,0,0,1,0,0,0] >;
C2×C32⋊C6 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes C_6
% in TeX
G:=Group("C2xC3^2:C6");
// GroupNames label
G:=SmallGroup(108,25);
// by ID
G=gap.SmallGroup(108,25);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,483,253,1804]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^3=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C2×C32⋊C6 in TeX
Character table of C2×C32⋊C6 in TeX